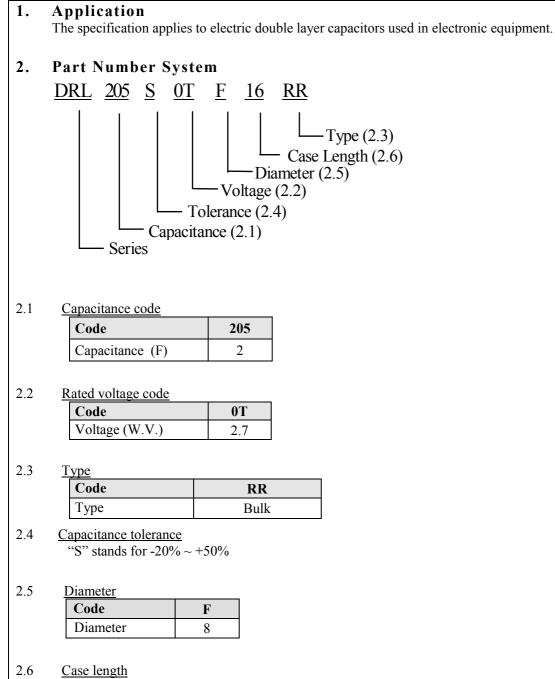


ELECTRIC DOUBLE LAYER CAPACITORS PRODUCT SPECIFICATION

CATEGORY (品名)	: ELECTRIC DOUBLE LAYER CAPACITORS
DESCRIPTION (型号)	: DRL 2.7V2F (φ8x16)
VERSION (版本)	: 01
Customer P/N	: /
SUPPLIER	: /

SUPPL	SUPPLIER		CUSTC	OMER
PREPARED (拟定)	CHECKED (审核)	APPROV (批准)		SIGNATURE (签名)
吴功芳	谢彭彬			

		SPECIFICAT	TION		ALTERN	ATION HIS	TORY
D	Dete	DRL SERIE		Contonto		ECORDS	A
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver
							1


Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	1		
STANDARD MANUAL						

CONTENTS Sheet Application 3 1. Part Number System 2. 3 3. Characteristics $4 \sim 10$ 3.1 Rated voltage & Surge voltage 3.2 Capacitance (Tolerance) 3.3 ESR 3.4 Leakage current 3.5 Temperature characteristic 3.6 Load life test 3.7 Damp heat test 3.8 Lead strength 3.9 Resistance to vibration 3.10 Solderability 3.11 Resistance to soldering heat 4. Product Dimensions 11

Issue Date : 2013-08-27	Name	Specification Sheet – DRL						
Version	Version 01 Page 2							
STANDARD MANUAL								

16=16mm

Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	3		
STANDARD MANUAL						

3. Characteristics

 Standard atmospheric conditions

 Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

 Ambient temperature: 15°C to 35°C

 Relative humidity
 : 25% to75%

 Air Pressure
 : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40°C to 60°C.

Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	4		
STANDARD MANUAL						

ITEM	PERFORMANCE
3.1 Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 2.7 SV (V.DC) 2.8
3.2 Nominal capacitance (Tolerance)	 <condition> Constant current discharge method: Measuring circuit:</condition> Constant current / constant voltage Y Cx S Constant Current power supply Y Cx <

Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	5		
STANDARD MANUAL						

Table 1 – Discharge conditionsCharge time30 min $I(mA)$ $4 \ge CUR$ U_1 The value to be 80% of the charging voltage ($0.8 \ge UR$) U_2 The value to be 40% of the charging voltage ($0.4 \ge UR$)NOTECR is the rated capacitance in F(Farad), and UR is the rated voltage in V (Volt)	3.2	Nominal capacitance (Tolerance)	Voltage (V) U_{1} U_{2} U_{2} U_{2} U_{2} U_{2} U_{3} U_{4} U_{2} U_{2} U_{2} U_{3} U_{4}
U_1 The value to be 80% of the charging voltage ($0.8xUR$) U_2 The value to be 40% of the charging voltage ($0.4xUR$)			Charge time 30 min
			U_1 The value to be 80% of the charging voltage (0.8xUR)

Issue Date : 2013-08-27	Name	Specification Sheet – DRL					
Version	Version 01 Page 6						
STANDARD MANUAL							

3.3	ESR	Measurin Measurir <criteri< b=""> (20°C)Le Rated V</criteri<>	ng frequency ng temperatu ng point a> ss than the i	re:20±2°C : 2mm max fro	om the surface of a Dimension $(D \times L, mm)$	sealing resin on the lead wire ESR, AC $(m \Omega)$ (max) at 1kHz/20°C	
		2	2.7	2	8x16	280	
3.4	Leakage current	2.The ele 3. Desista <criteria Less thar I≤ 0.010</criteria 	ent temperation tectrification ance value of hothe initial l	of protective residual $(25^{\circ}C \pm 2^{\circ})$	sistor less than 1Ω		
		<conditio< td=""><td></td><td>rature(°C)</td><td>Item</td><td>Characteristics</td></conditio<>		rature(°C)	Item	Characteristics	
		1	-	0±2	Capacitance ESR		
					△C/C	Within ±30% of initial capacitance	
3.5 Temperature characteristic	2	$\begin{array}{c c} 2 & -40+3 \\ \hline \\ 3 & Keep at 15 to 35^{\circ}C for \\ 15 minutes or more \end{array}$		ESR	Less than or equal to 4 times of the value of item 3.3		
	3						
	4	60±2		$\triangle C/C$	Within ±30% of initial capacitance		
		0	V2	ESR	The limit specified in 3.3		
		ENK -					

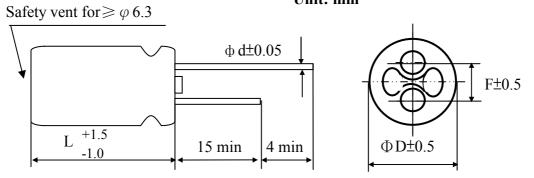
Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	7		
STANDARD MANUAL						

	1		
			at a temperature of 60 ± 2 °C with rated nours .The result should meet the following table:
		Item	Performance
		Capacitance Change	Within $\pm 30\%$ of initial capacitance
2.6	Load life	ESR	Less than or equal to 4 times of the value of item 3.3
3.6	test	Appearance	No visible damage and no leakage of electrolyte
3.7	Damp heat test		exposed for 240±48 hours in an atmosphere of 90~95%RH at stic change shall meet the following requirement.

Issue Date : 2013-08-27	Name	Specification Sheet – DRL					
Version	01		Page	8			
STANDARD MANUAL							

		a) Lead pull strength			
				erminal in the axial direction and a	acting
		in a direction away from the	•		
		Lead wire diamete	Load force (N)		
		0.5 and less		5	
		b) Load bonding			
		b) Lead bending When the canacitor is placed	l in a vertical i	position and the weight specified	in the
				the capacitor is slowly rotated 90	
3.8	Lead strength			vertical position thus completing b	
5.0	Lead Strength	for 2~3seconds.			
		The additional bends are ma			
		Lead wire diameter	(mm)	Load force (N)	
		0.5 and less		2.5	
				the following value after a) or b)	test.
		Item	Performance		
		Capacitance Change		% of initial capacitance damage Legible marking and no	
		Appearance	leakage of		
			ieunuge of		
3.9	Resistance to vibration	Performance: Capacitance value capacitance when the value is me	sion 1.5mm) hours) he following I Fig2 shall not show		on of

Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	9		
STANDARD MANUAL						


3.10	Solderability	The capacitor shall be tested under the following conditions:Solder: Sn-3Ag-0.5CuSoldering temperature: 245±3°CImmersing time: 2.0±0.5sImmersing depth: 1.5~ 2.0mm from the root.Flux: Approx .25% rosinPerformance: At least 75% of the dipped portion of the terminal shall be covered with new solder.
3.11	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylachol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260±5°C Immersing time : 5±0.5s Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : 350±10°C Application time : 3.5±0.5 s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: <u>Item Performance</u> Capacitance Change Within ±10% of initial capacitance Appearance No visible damage legible marking and no leakage of electrolyte

Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	10		
STANDARD MANUAL						

4. Product Dimensions

Unit: mm

φD	8
L	16
F	3.5
φd	0.5

Issue Date : 2013-08-27	Name	Specification Sheet – DRL				
Version	01		Page	11		
STANDARD MANUAL						

5. Notice item

- (1) The capacitor has fixed polarity.
- (2) The capacitor should be used under rated voltage.
- (3) The capacitor should not be used in the charge and discharge circuit with high frequency.
- (4) The ambient temperature affects the super capacitor life.
- (5) Voltage reduction ΔV =IR will happen at the moment of discharge.
- (6) The capacitor cannot be stored on the place with humidity over 85%RH or place with toxic gas.
- (7) The capacitor should stored in the environment within -30° C $\sim 50^{\circ}$ C temperature and less than 60% relative humidity.
- (8) If the capacitor is applied on the double-side PCB, the connection should not be around the place on which the super capacitor can contact.
- (9) Don't twist capacitor or make it slanting after installing.
- (10) Need avoid over heat on the capacitor during soldering (The temperature should be 260° C with the time less than 5s during soldering on 1.6mm printed PCB.)
- (11) There is voltage balance problem between each capacitor unit during series connection between super capacitor.

Issue Date : 2013-08-27	Name	Specification Sheet – DRL					
Version	01		Page	12			
STANDARD MANUAL							